Comparative LCA of blister packs and alternatives

Final restitution for CITEO customers - June 2025

CHIEO

SOUHIL Mathieu - LCA & eco-design project manager SALES Robin - Senior LCA & eco-design consultant MARQUES Axel - Junior LCA & eco-design consultant

Table of contents

1. Introduction / Presentation of EVEA

2. Context and objectives

- 1. Study background
- 2. Objectives

3. Methodology and indicators

4. Study framework

- 1. System Boundaries
- 2. Functional unit
- **5.** Input data and assumptions
- **6.** Results and interpretation
- 7. Conclusions and key takeaways
- 8. Next steps
- 9. Q&A

Glossary

- ICP : Industrial and Commercial Packaging
- SU : Sale Unit
- SS : Single Score
- CC : Climate Change
- LCA : Life Cycle Assessment
- EOL : End Of Life
- PEF : Product Environmental Footprint
- PPWR : Packaging and Packaging Waste Regulation
- CFF : Circular Footprint Formula
- SA : Sensitivity analysis
- FU : Functional Unit

Table of contents

1. Introduction / Presentation of EVEA

- **2.** Context and objectives
 - 1. Study background
 - 2. Objectives
- **3.** Methodology and indicators
- 4. Study framework
 - 1. System Boundaries
 - 2. Functional unit
- **5.** Input data and assumptions
- **6.** Results and interpretation
- 7. Conclusions and key takeaways
- 8. Next steps
- 9. Q&A

- 144 people, including 127 partners
 - 3 offices in Nantes, Lyon and Troyes
 - Ambassadors throughout France

which brings together consultants, engineers, doctors, IT specialists in their field

Consulting, Software, Training

We help you to improve the environmental and social performance of your products/services/activities

Since 2005, we have been helping organisations to offer more responsible products, services and activities, with solid methodological expertise.

Our mission

Transferring our skills through our training offering, deploying software tools and supporting our customers... with an entrepreneurial and cooperative culture that we want to share.

Understanding and assessing your challenges

- LCA: life cycle assessment
- ASCV: social analysis of the life cycle
- BGES: greenhouse gas emissions balance sheet
- ESDS: environmental and health data sheet
- PEP: Product Environmental Profiles

Making the most of your results

- Responsible communication
- Environmental labelling
- CSRD reporting

Supporting your transformation

- Eco-design
- Eco-innovation
- Climate and/or biodiversity strategy
- Social and socio-economic impact
- R&D (EVEA is an accredited

accredited research institute)

Integrate tools and deploy

- Training in environmental and social assessment and eco-design (EVEA is a *Qualiopi* accredited training institute)
- Publishing and distribution of software tools

7 centres of expertise with strong interactions

Table of contents

1. Introduction / Presentation of EVEA

2. Context and objectives

- 1. Study background
- 2. Objectives
- **3.** Methodology and indicators
- **4. Study framework**
 - 1. System Boundaries
 - 2. Functional unit
- **5.** Input data and assumptions
- **6.** Results and interpretation
- 7. Conclusions and key takeaways
- 8. Next steps
- 9. Q&A

Context and objective of the project

Following legislative changes, in particular the **PPWR**, aimed at improving recyclability and banning non-recyclable packaging placed on the market, CITEO wishes to support its customers by carrying out an environmental study of **alternative packaging that could be candidates for the common PET/cardboard blister packagings**. In fact, there are other alternatives to this "typical" blister pack, alternatives that must be considered **recyclable** under future European regulations.

In order to validate the environmental relevance of this alternative packaging compared to the PET/cardboard blister pack, CITEO wishes to carry out a comparative environmental assessment using the LCA method.

CITEO also wishes to **submit this new assessment to a critical review** so that it can communicate the results.

One of the objectives is to highlight the environmental impact of the alternatives to CITEO's customers and industrials.

Background to the study

Regulations require all packaging to be recyclable by 2030. CITEO CITEO CITEO wants to help its customers find Comparative LCA of recyclable structures different types/families of with better environmental recyclable packaging in Carton/PET blister performance. 2030 packs are likely to be banned in 2030 and need to evolve

eveo

The visuals are for illustrative purposes only (and not the actual products used in the study).

Aim of the project

Packaging families under study

Scenarios	Identification number	Type of pack	Materials/features
Reference scenario	1.N	PET/cardboard blister	PET shellFlat cardboard base
	2.N	Reverse blister pack	 Flat cardboard shell and base
	3.N	Cardboard case	Folded flat cardboard
	4.1	Cardboard + strap	Flat cardboard baseNylon tie (clamp)
	5.1	Moulded cellulose	Cellulose shellPET lid
Alternative scenarios	7.1	Opaque flexible paper flowpack	PaperHDPE filmPU glue
	8.1	PP flexible flowpack	PP film PU glue
	6.1	Transparent flexible paper flowpack	PaperPP FilmPU glue
	9.N and 10.1	Bulk (with and without display)	Flat cardboard box for transport and display

LCA CITEO Blister Packaging - © EVEA

eveo

Purpose of the project Sensitivity analyses

The parameters to be varied will be studied in sensitivity analyses:

- SA1: Variation in the incorporated recycled content of certain materials
- SA2: Asian origin of raw materials
- **SA3**: Change in packed volume for carton/PET blisters

Sensitivity analyses will make it possible to identify the tipping points between certain parameters

3 sensitivity studies

Table of contents

1. Introduction / Presentation of EVEA

2. Context and objectives

- 1. Study background
- 2. Objectives

3. Methodology and indicators

- **4. Study framework**
 - 1. System Boundaries
 - 2. Functional unit
- **5.** Input data and assumptions
- **6.** Results and interpretation
- 7. Conclusions and key takeaways
- 8. Next steps
- 9. Q&A

Reminders on Life Cycle Assessment

Life Cycle Assessment (LCA) is a standardised method (ISO 14040 and 14044) used to assess the potential environmental impact of a product.

The two main principles of LCA are :

A multi-criteria analysis

The impact of each indicator is calculated using the EF 3.1 method, the calculation method recommended by the PEF (Product Environmental Footprint). 6 indicators have been selected, indicators desired by CITEO as well as by their contribution to the unique PEF score.

The single score

Using a single score makes it easier to compare results and identify transfers of impact.

The Single Score is a score calculated from 16 environmental impact indicators, using standardisation and weighting:

- **Normalization** converts the units of all the indicators (kg CO2 eq, m3 world eq...) to a common unit (Point: Pt) so that 1 Pt is representative of the annual environmental impact of one inhabitant in the world.
- **Weighting** as defined by the PEF method (European Commission), accounts for the robustness of the indicators and the significance of the environmental challenges.

Here B has a lower single score than A, so B has less impact than A

Point of attention

• A single score gives you a trend but does not allow you to communicate

• The method for calculating the single score (PEF method) is subject to change

Table of contents

1. Introduction / Presentation of EVEA

2. Context and objectives

- 1. Study background
- 2. Objectives
- **3.** Methodology and indicators

4. Study framework

- 1. System Boundaries
- 2. Functional unit
- **5.** Input data and assumptions
- **6.** Results and interpretation
- 7. Conclusions and key takeaways
- 8. Next steps
- 9. Q&A

Study framework

Comparison on the basis of a functional unit

- 27 types of packaging classified into 10 families with the same main function: package and protect non-food products
- Functional unit: Transporting and displaying 1 cm³ of non-food products in a sales outlet.

Scope of the study Definition of the life cycle and scope of the study

Scope: From extraction of raw materials to end of life (cradle to grave) - primary / secondary / tertiary packaging

Table of contents

1. Introduction / Presentation of EVEA

2. Context and objectives

- 1. Study background
- 2. Objectives

3. Methodology and indicators

4. Study framework

- 1. System Boundaries
- 2. Functional unit

5. Input data and assumptions

- **6.** Results and interpretation
- 7. Conclusions and key takeaways
- 8. Next steps
- 9. Q&A

Hybrid data collection procedure and level of data quality

LCA CITEO Blister Packaging - © EVEA

evec

General assumptions relating to the overall project

Hypothesis	Justification
Exclusion of the manufacture of products contained in the packaging	Not the primary objective of the study, and the products are very varied, so it's impossible to have a "standard" product.
Recycling of flexible PP modelled using a mechanical process	Flexible PP should be chemically recycled by 2030, but this data does not yet exist. There are a variety of chemical recycling processes
Exclusion of ICPs for the transport of empty packaging components and associated transport	Going up the entire value chain to collect this logistics data was considered too complex. EVEA considers their impact to be negligible in the context of this study.
Exclusion of the use phase (shelf scraps, product breakage, etc.)	This limit may be important if one packaging design leads to greater product loss than another packaging design.
Exclusion of transport between the consumer's home and the point of sale	Allocation of transport from the individual to the sales site is not at the heart of the issues at stake in this LCA.
Exclusion of specific sales systems dedicated to the sale of bulk products (shelf bins, dispensers, etc.).	The products are not studied, which makes it difficult to model infrastructures dedicated to bulk sales.

Primary packaging - general assumptions

Data	Hypothesis
Percentage of recycled material incorporated	0% in the base case for all scenarios . The aim was to compare packaging designs but not the specific choices of each brand.
Percentage of production off-cuts	Collected by the brands or estimated by EVEA from packaging samples received (surface measurements)

Primary packaging

1. Example of ICV: PET blister/carton

Product number	Material	Component weight (g)	Percentage drop in production (%)	Manufacturing process	Finishing process	Finishing surface (cm²)	Total mass (g)	Volume (cm3)	
1.1	Flat cardboard	3,3	11%	Cardboard cutting	Heat-seal varnish + Offset printing	234	7	95,3	
	PET	3,7	6%	Thermoformed	Thermoformed -				
1.2	Flat cardboard	3,9	1%	Cardboard cutting	Heat-seal varnish + Offset printing	236	5,9	50	
	PET	2	6%	Thermoformed -		-]		
1.3	Flat cardboard	3,1	3%	Cardboard cutting	Heat-seal varnish + Offset printing	180	4,41	25,05	
	PET	1,31	6%	Thermoforming	-	-			
1.4	Flat cardboard	8,5	1%	Cardboard cutting	Heat-seal varnish + Offset printing	674	18,8	168,64	
	PET	10,3	6%	Thermoforming	-	-			
1.5	Flat cardboard	8,5	1%	Cardboard cutting	Heat-seal varnish + Offset printing	674	22,97	352	
	PET	14,47	6%	Thermoforming	-	-]		

* Modelling data for the other families can be found in the appendices.

Secondary packaging (ICP) - For all products

The exact quantity of each ICP varies according to mass, the shape of the primary packaging and the layout of the pallet *(which is not detailed in this presentation)*.

However, the quantity of film and the weight of the pallet are always the same. It is assumed that the pallet is reused an average of 25 times.

Material	Unit weight (g)	Comment		
Corrugated cardboard *	Varies according to product			
LDPE film	300	For all primary packaging		
Pallet - Wood	25000			

* Some products have plastic II packaging (PET trays) or paper inserts in addition to corrugated cardboard.

DATA USED AND ASSUMPTIONS Logistical data

Sourcing	Hypothesis
Raw materials \rightarrow Processing plants components	Included in ecoinvent data
Components \rightarrow Primary pack manufacturing plants	Included in ecoinvent data
Industrial & commercial packaging → Primary packaging plants	Included in ecoinvent data
Packaging plant \rightarrow Points of sale	Truck transport 32T EURO 6 - RER - 500km
End-of-life waste management logistics (collection, sorting, recycling, incineration, etc.)	Average truck transport to end-of-life sites (ADEME data)

DATA USED AND ASSUMPTIONS End-of-life packaging I, II, III - FRANCE

Effective recycling rate (in %)	Flat cardboard	Corrugated cardboard	Pallet wood	PP flexible	LDPE	PET	Adhesive Coating Finish
France 2030	85	85	30	55	55	55	0

Residual landfill and incineration rates (%)	👌 Incineration	●Landfill
France 2030	71	29

Source 2030: ADEME AND CITEO 2023

End-of-life is modelled using the methodology recommended by the European Commission CFF (Circular Footprint Formula)

The end-of-life assumptions are based on a prospective situation (2030) for recycling the various materials. In LCA modelling, **not all packaging components are considered recyclable!** For example, no component of packaging 1.1 is recyclable because the mass of cardboard is less than 70% of the total mass of the packaging. Table 13,

page 59, of the ISO report validated by critical review, details all the elements/components that are recyclable or not.

Table of contents

1. Introduction / Presentation of EVEA

2. Context and objectives

- 1. Study background
- 2. Objectives

3. Methodology and indicators

4. Study framework

- 1. System Boundaries
- 2. Functional unit
- **5.** Input data and assumptions

6. Results interpretation

- 7. Conclusions and key takeaways
- 8. Next steps
- 9. Q&A

Table of contents

6. Results and interpretation

0 Pack weights per 1cm³

- **1.** Comparative LCA results :
 - 1. Single Score PEF only
 - 2. Position (rank) of the 27 packs
 - 3. Indicators contributing to the Single Score

2. Contribution of life cycle stages

- 1. Climate change
- 2. PEF Single Score
- **3.** Results by packed volume class (on CC)
- **4.** Secondary functions
- **5. Sensitivity analysis**
 - 1. SA1: Integration of recycled materials in packaging
 - 2. SA2: Asian origin of packaging
 - 3. SA3: Change in packed volume for cardboard/PET blisters

0. Pack weights (per SU = Sale Unit*)

- If we focus on the mass per **1cm³ packed**, some clear trends can be observed
- The 1 family of cardboard/PET blisters has the highest ratio, followed by 2 blister inverted cardboard, then 3 cardboard cases (with at least 5 samples).
- The **8** flexible PP and **9**& 10 bulk families seem to have the best ratio g/cm³
- For the other families, the limited number of samples makes it difficult to identify any trends.

* Sale Unit (SU) refers to the basic packaging of a product intended for sale directly to the end consumer. It represents the smallest unit that can be purchased individually.

1.1 Comparative LCA - PEF single score

- -`____
- S Based on the single score (SS), the alternatives studied have less impact than the 1 blister pack references.
- \bigcirc In detail, we observe that:
 - the flexible packaging categories 6 (transparent paper), 7 (opaque paper), 8 (PP) and bulk 9 & 10 have a much lower impact than the benchmark,
 - The individual packaging categories based on cardboard 2 (reverse blister), 3 (cardboard case), and 5 (moulded cellulose) are better than the reference overall, but some designs generate limited environmental gains (2.1, 2.2, 3.4 and 3.5) because of their low packed volume.
 - The impact of the 4 cardboard + strap category is comparable or even greater than that of the benchmark. It is difficult to conclude whether this packaging is irrelevant, since it is represented only by one design and does not protect a defined volume (packaged volume = product volume -> underestimated).

1.2 Raking of the 27 packaging types

Legend: from most to least impacting, depending on the FU

					1 Blister Cardboard + PET					2 Reverse	blister					3 Cardboard case			 4 Cardboard +strap 	5 Moulded cellulose	6 Transp. flexible PP.paper	7 Opaque flexible PE.paper		o Elovisto DD			9 Bulk w/o	display	10 Bulk w/ display
	Category of damage	Unit	1.1	1.2	1.3	1.4	1.5	2.1	2.2	2.3	2.4	2.5	2.6	3.1	3.2	3.3	3.4	3.5	4.1	5.1	6.1	7.1	8.1	8.2	8.3	8.4	9.1	9.2	10.1
	Single score	μPt																											
×	<u>Climate change</u>	kg CO2 eq																											
	Depletion of the ozone layer	kg CFC11 eq																											
	lonising radiation	kBq U-235 eq																											
Indicators	Photochemical ozone formation	kg NMVOC eq																											
selected	Fine particles	disease inc.																											
(detailed on	Human toxicity. non-carcinogenic	CTUh																											
the following	Human toxicity. cancer	CTUh																											
slides)	Acidification	mol H+ eq																											
	Eutrophication. freshwater	kg P eq																											
	Marine eutrophication	kg N eq																											
	Terrestrial eutrophication	mol N eq																											
	Ecotoxicity. freshwater	CTUe																											
	Land use	Pt																											
	<u>Use of water</u>	m3 depriv.																											
	Use of fossil. resources	MJ																											
	Use of resources. minerals and metals	kg Sb eq																											

-\̈̈́_-

OThere are **no notable pollution shifting** identified on the various indicators and for the 27 packages studied.

→ The hierarchy of impacts presented for the single score and for climate change remains valid, on the whole, for the 16 indicators.

The best solutions for the majority of indicators remain the 6 to 10 categories, followed by the 2,3&5 and 4 categories.

1.3 Indicators contributing to the single score

The impact of each indicator is calculated using the EF 3.1 method, the calculation method recommended by the PEF (Product Environmental Footprint). 6 indicators have been selected, based on CITEO's wishes and their contribution to the single score.

Which stages of the life cycle have the greatest impact on the environment?

1.3 Indicators contributing to the single score

The impact of each indicator is calculated using the EF 3.1 method, the calculation method recommended by the PEF (Product Environmental Footprint). 6 indicators have been selected, based on CITEO's wishes and their contribution to the single score.

Description Impact indicators Unit Human activities, in particular the use of fossil fuels, have led to an exceptional increase in the concentration of **Climate change** g CO₂ eq. greenhouse gases, resulting in global warming. Land usClimate change is the only indicator studied in this presentation, agriculture, forestry, etc. which is intended to raise awareness and popularise the subject. de la companya de la For more information on the other indicators, please refer to the ISO Sources kg LCA report validated tby Critical Reviewer discharges that accelerate the growth of algae and **Eutrophication of fresh water** For information: there is no significant impact on the other indicators or on the Single Score. **Depletion of non-renewable** kq Sb eq. metallic and inorganic resources Which stages of the life cycle have the greatest impact on the environment?

2.1 Contribution of the LC (Life Cycle) stages, Climate Change

- For all the scenarios studied, the stages that contribute most to the impact of climate change are raw materials and ICPs. For flexible packaging (6 to 8) and for some classic blister, reverse blister and cardboard case designs, the ICPs are the components that contribute most to the system's impact. These components should not be neglected in the eco-design of new alternatives.
- The finishing/decorating stage has a significant impact on climate change, particularly for individual cardboard-based solutions (blister packs 12, cardboard case 3).
- Contrary to the single score, the **end-of-life** stage is a major contributor to **carton-based** packaging.
- The raw materials processing and transport stages make a small contribution to the impact of the Group's activities.

.....

2.2 Contribution of the Life Cycle stages, Single Score

- For all the scenarios studied, the stages that contribute most to the Single Score impact are raw materials and ICPs. For flexible packaging (6) à 8) and for certain **blister**, **reverse blister** and **case** designs, **the ICPs** are the components that contribute most to the system's impact. These components should not be neglected in the eco-design of new alternatives.
- The finishing/decoration stage has a significant impact on the single score, particularly for solutions based on cardboard (blisters 1 & 2), . cases 3).
- The transformation of raw materials, transport and end-of-life stages make a small contribution to the impact of our products on the • environment.

3. Comparative LCA by volume class, Climate Change

- By classifying packaging according to the size of the volume packed, the interpretations do not change. For example, for a similar volume (170 cm³), the alternatives 2 and 3 generate impacts 2 to 7 times lower than 1.
 - Focusing on only one category, the impact on climate change is directly linked to the volume packed.
 - \rightarrow The greater the volume, the lower the impact for a given category.
- **CAUTION**: Packing a larger quantity of a product could lead users to consume more than they need.
 - → Impact shifting

4. Taking secondary functions into account, Venn diagram

41

Intermediate synthesis

Overall impact :

Alternatives have less overall impact than the reference blister pack

No significant impact shiffting: The hierarchy of impacts remains valid for 16 indicators.

Hierarchy of alternatives:

Best performers: **Flexible** packaging (6 to 8) and **bulk** (9 - 10).

 \sim Contrasting results: Individual cardboard packaging (2-3-5) is better overall, but some designs offer limited gains.

▲ Similar or better impact: Cardboard + strap (4), low representativeness → Promising solution to be explored further.

Q At **equivalent volume**, this hierarchy remains true

Only the alternatives 8 (flexible PP) and 4 (cardboard + strap) fulfil the 3 defined secondary functions

Analysis by life cycle stage:

[1] Raw materials: Main contributor to impact for all packaging types.

ICP: Key factor for **flexible** (6-8) and some **blister**, **reverse blister** and **cardboard ase** designs.

Finish/Decoration: Significant impact, especially for **individual cardboard** solution (blisters 1 2, cases 3).

A materials: Low contribution to overall impact.

• End of life: Significant contribution for CC cardboard packaging, but low for the Single Score.

Would the conclusions be the same if certain parameters were to change?

5. Sensitivity analysis

The parameters to be varied will be studied in sensitivity analyses:

- SA1: Variation in the incorporated recycled content of certain materials
- **SA2**: Asian origin of raw materials
- **Q** SA3: Change in **packed volume** for carton/PET blisters

3 sensitivity studies

5. 😣 SA1: Variation in the rate of incorporated recycled material

Incorporating 50% recycled material reduces the impact of climate change by 0 to 9% over the entire life cycle.

٠

- Categories that benefit most from the integration of recycled materials are those that use plastic (classic blister and flexible pack).
- Packaging categories that mainly use cardboard have less interest in integrating recycled content because of the co-production of a biosourced material (black liquor) in the virgin cardboard manufacturing process and its energy recovery (substitution → impact avoided). And the CFF's A factor, set at 0.2 for cardboard, which reduces the benefits of incorporating recycled materials (A=0.5 for plastics).

5. 📀 SA2: Asian sourcing of raw materials

- Modelling: based on the Chinese energy mix (when electricity is used as an input), otherwise average Asian market raw materials.
 →Transport added (ship + truck).
- Sourcing in Asia is decisive for the environmental impact of all packaging → This will increase the impact of climate change by 11% to 94%.
- Favouring European sourcing is therefore a key factor in the design of alternatives to blister packs.
 - \rightarrow Depends on the energy mix of the country of production.

5. **§** SA3: Variation in packaged volume for carton/PET blisters.

Table of contents

1. Introduction / Presentation of EVEA

2. Context and objectives

- 1. Study background
- 2. Objectives

3. Methodology and indicators

4. Study framework

- 1. System Boundaries
- 2. Functional unit
- **5.** Input data and assumptions
- **6.** Results and interpretation
- 7. Conclusions and key takeaways
- 8. Next steps
- 9. Q&A

Conclusions

Overview

Key findings

Limits of the study

Conclusion

Overview

49

Life cycle categories in order of importance :

Key findings

Overall, the alternatives are all less impactful than the reference blister pack, basing on the functional unit defined

I Raw materials

- Main contributor to impact for all types of packaging
- □ Favouring European sourcing is a key factor in controlling impact (SA2)
- □ Incorporating 50% recycled material allows a maximum 10% reduction in impact (SA1)

🗅 💽 ICP

- □ Major contributor to environmental impact
- Generalized and the second second strain and the second s Second sec
- Analysis by secondary functions enables further analysis and identification of alternatives adapted to the packaging needs of each product

Limits of the study

- Heterogeneity in data collection
 - Samples,
 - Technical data sheets
 - Representativeness

Table of contents

1. Introduction / Presentation of EVEA

2. Context and objectives

- 1. Study background
- 2. Objectives

3. Methodology and indicators

4. Study framework

- 1. System Boundaries
- 2. Functional unit
- **5.** Input data and assumptions
- **6.** Results and interpretation
- 7. Conclusions and key takeaways
- 8. Next steps
- 9. Q&A

Next steps

LCA

→ The ISO report will be published on the blisters AAP website in the second half of June: [Call for projects] Disposal of non-recyclable cardboard/plastic blister packs | CITEO (early July in English)

- → The presentation will be available in a few days. The presentation will be translated into English on 23th of June.
- → EVEA recommendations: Read the report, particularly the last section (conclusions and recommendations). Carrying out LCAs on a case-by-case basis will help to reinforce the conclusions when planning to replace blister packaging.

Call for projects "Disposal of non-recyclable cardboard/plastic blisters".

Application deadline: **4 June 2025** Closing date for applications: **10 July 2025** at 11.59pm Announcement to individual winners **before the end of July**

Table of contents

1. Introduction / Presentation of EVEA

2. Context and objectives

- 1. Study background
- 2. Objectives
- **3.** Methodology and indicators
- 4. Study framework
 - 1. System Boundaries
 - 2. Functional unit
- **5.** Input data and assumptions
- **6.** Results and interpretation
- 7. Conclusions and key takeaways
- 8. Next steps
- 9. Q&A

Q&A Ask us your questions!

Primary packaging

2. Inverted blister pack

Product number	Material	Component weight (g)	Percentage drop in production (%)	Manufacturing process	Finishing process	Finishing surface (cm²)	Total mass (g)	Volume (cm3)	
2.1	Flat cardboard	8	15%	Cardboard cutting	Offset printing	229,94	8	88,7	
2.2	Flat cardboard	7,5	17%	Cardboard cutting	Offset printing	512	8,5	56	
2.3	Flat cardboard	7,8	34%	Cardboard cutting	Offset printing	206	7,8	85,4	
2.4	Flat cardboard	18,4	6,5%	Cardboard cutting	Offset printing	494	18,4	436,6	
2.5	Flat cardboard	12	7,2%	Cardboard cutting	Offset printing	241,67	10.14	167.4	
2.5	PP	0,14	20%	Extrusion	NA	NA	12,14	107,4	
2.6	Flat cardboard	8,12	3%	Cardboard cutting	Offset printing	298	8,12	106,1	

Primary packaging

3. Case

Product number	Material	Component weight (g)	Percentage drop in production (%)	Manufacturing process	Finishing process	Finishing surface (cm²)	Total mass (g)	Volume (cm3)
3.1	Flat cardboard	12,05	26%	Cardboard cutting	Offset printing	636	12,05	382,5
3.2	Flat cardboard 36,8		34%	Cardboard cutting	Offset printing + Matt PP lamination	661	56,9	902,7
	Corrugated cardboard	20,1	2%	Cardboard cutting	-	-		
3.3	Flat cardboard	9,86	24%	Cardboard cutting	Offset printing	506	9,86	130
3.4	Flat cardboard	8,8	45%	Cardboard cutting	Offset printing	245	8,8	85,4
3.5	Flat cardboard	20,3	12%	Cardboard cutting	Offset printing	793	20,3	255

Primary packaging

4. à 7. Cardboard / Moulded Cellulose / Flexible paper and/or PP flowpack

Product number	Material	Component weight (g)	Percentage drop in production (%)	Manufacturing process	Finishing process	Finishing surface (cm²)	Total mass (g)	Volume (cm3)	
	Flat cardboard	21,7	5%	Cardboard cutting	Offset printing	340			
4.1	Nylon	2	5%	Injection	-	-	- 25,2		
	LDPE (Bubble bag)	1,5	5%	Extrusion	-	-			
5.1	Cellulose	8	1%	Thermoforming/mouldi ng cellulose	-	-	8,32	146,48	
	PET lid	0,32	2,4%	Film extrusion	Flexo printing	96			
6.1	Paper	1,5	1%	Extrusion Film (PP) + Lamination (paper + PP) + Flowpackage	Offset printing	240	1,96	149	
	PP	0,4			Gloss varnish	240			
	Pu glue	0,06			-	-			
7.1	Paper	1,8	1,%	Flowpackage	Offset printing	240	2,4	126	
	LDPE film	0,6	2,4%	Film extrusion	-	-			

Primary packaging

8. Flexible PP

Product number	Material	Component weight (g)	Percentage drop in production (%)	Manufacturing process	Finishing process	Finishing surface (cm²)	Total mass (g)	Volume (cm3)
8.1	PP	5,37	1%	Extrusion of PP film + flowpackage (1 side)	Flexo printing	315	5,81	414,12
	Paper	0,44	18%	-	-		1	
8.2	PP	1,24	to be determined	PP extrusion + flowpackage (2 sides)	Flexo, digital or offset printing	240	1,3	85,4
	PU glue	0,06	to be determined	-			1	
8.3	PP	3,8	0%	PP extrusion + flowpackage (2 sides)	-	-	13,8	700
	Flat cardboard	10	6%	Cardboard cutting	Offset printing	306		
8.4	PP	1,1	1%	PP extrusion + flowpackage (2 sides)	Flexo, digital or offset printing	240	1,16	86,6
	Pu glue	0,06	to be determined	-	Water-based varnish	-		

Primary packaging

9. and 10.1 Bulk

Product number	Material	Component weight (g)	Percentage drop in production (%)	Manufacturing process	Finishing process	Finishing surface (cm²)	Total mass (g)	Volume (cm3)
9.1	Flat cardboard	43	5,00%	Cardboard cutting	Offset printing	700	43,0	1120
9.2	Flat cardboard	15	5%	Cardboard cutting	Offset printing	466,7	15	499,983
	Flat cardboard	40,68	43,50%	Cardboard cutting	Offset printing	1076,4	43,1	1365
10.1	Paper	0,14	5%	Paper cutting	Offset printing	17,28		
	LDPE	2,30	2%	Extrusion	-	-		

